WASTE ACCEPTANCE CRITERIA

Chalk River Site (includes NLBU Administrative Records)

232-508600-WAC-002

Revision 2

The use and meaning of "ACCEPTED" is governed by the terms and conditions of the P.O. CNL Ref. No. 481680 and in any event its use does not relieve the manufacturer of any of its obligations to CNL and/or to its Client.

©Canadian Nuclear Laboratories
©Laboratoires Nucléaires Canadiens

286 Plant Road
Chalk River, Ontario
Canada K0J 1J0

286, rue Plant
Chalk River (Ontario)
Canada K0J 1J0
Canadian Nuclear Laboratories
Near Surface Disposal Facility Design and Consulting Services

Waste Acceptance Criteria
232-508600-WAC-002
Deliverable 1.1, Revision 2

AECOM Project Number: 60512856
CNL Purchase Order Number: 481680
CNL NSDF Design & Consulting Services Agreement Number: RFP 636642, Revision 1

Prepared by:
AECOM Canada Ltd.
105 Commerce Valley Dr. W
Markham, ON, Canada L3T 7W3
www.aecom.com

Date:
2017 June 21
Revision History

<table>
<thead>
<tr>
<th>Revision #</th>
<th>Date</th>
<th>Revised By</th>
<th>Revision Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2016/09/30</td>
<td></td>
<td>30% Design Deliverable</td>
</tr>
<tr>
<td>B</td>
<td>2016/11/30</td>
<td></td>
<td>60% Design Deliverable</td>
</tr>
<tr>
<td>C</td>
<td>2017/01/31</td>
<td></td>
<td>90% Design Deliverable</td>
</tr>
<tr>
<td>0</td>
<td>2017/03/31</td>
<td></td>
<td>Final Deliverable</td>
</tr>
<tr>
<td>1</td>
<td>2017/04/26</td>
<td>CNL</td>
<td>Revised technical content provided by CNL and insertion of AECOM front matter</td>
</tr>
<tr>
<td>2</td>
<td>2017/06/21</td>
<td>CNL</td>
<td>Revised technical content provided by CNL and insertion of AECOM front matter</td>
</tr>
</tbody>
</table>
Statement of Qualifications and Limitations

The attached Report (the “Report”) has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):
- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM’s professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13

© 2009-2015 AECOM Canada Ltd. All Rights Reserved.
Elements of this report have been redacted as they are sensitive from a Commercial or Security perspective.

Waste Acceptance Criteria

NSDF Waste Acceptance Criteria

Waste Management Areas

232-508600-WAC-002
Revision 2

2017 June

OFFICIAL USE ONLY

This document and the information contained in it is the property of Atomic Energy of Canada Limited (AECL). No use, disclosure, exploitation or transfer of any information contained herein is permitted in the absence of an agreement with AECL, and the document may not be released without the written consent of AECL.

© Canadian Nuclear Laboratories
286 Plant Road
Chalk River, Ontario
Canada K0J 1J0

© Laboratoires Nucléaires Canadiens
286, rue Plant
Chalk River (Ontario)
Canada K0J 1J0
Waste Acceptance Criteria

NSDF Waste Acceptance Criteria

Waste Management Areas

232-508600-WAC-002
Revision 2

2017 June
OFFICIAL USE ONLY
© Canadian Nuclear Laboratories
286 Plant Road
Chalk River, Ontario
Canada K0J 1J0

juin 2017
À USAGE EXCLUSIF
© Laboratoires Nucléaires Canadiens
286, rue Plant
Chalk River (Ontario)
Canada K0J 1J0
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Details of Rev. / Détails de la rév.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2017/03/28</td>
<td>Issued for “Review & Comment”.</td>
</tr>
<tr>
<td>R0</td>
<td>2017/04/24</td>
<td>Issued as “Approved for Use”.</td>
</tr>
<tr>
<td>R1</td>
<td>2017/05/08</td>
<td>Issued as “Approved for Use”. Minor formatting changes.</td>
</tr>
<tr>
<td>R2</td>
<td>2017/06/20</td>
<td>Issued as “Approved for Use”. Minor formatting changes.</td>
</tr>
</tbody>
</table>
Document Details / Détails sur le document

<table>
<thead>
<tr>
<th>Title/Titre</th>
<th>Total no. of pages/Nbre total de pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSDF Waste Acceptance Criteria</td>
<td>43</td>
</tr>
</tbody>
</table>

For Release Information, refer to the Document Transmittal Sheet accompanying this document. / Pour des renseignements portant sur la diffusion, consultez la feuille de transmission de documents ci-jointe.

Revision History / Liste de révisions

<table>
<thead>
<tr>
<th>Revision / Révision</th>
<th>Details of Rev. / Détails de la rév.</th>
<th>Prepared by Rédigé par</th>
<th>Reviewed by Examiné par</th>
<th>Approved by Approuvé par</th>
</tr>
</thead>
<tbody>
<tr>
<td>No./N°</td>
<td>Date/Date (yyyy/mm/dd)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

232-508600-WAC-002 2017/06/20
TABLE OF CONTENTS

SECTION PAGE

8.2 Exposure Rates on Waste Packages... 8-1
9. WASTE ACCEPTANCE PROCESS.. 9-1
9.1 Waste Characterization ... 9-1
9.1.1 Acceptable Knowledge Requirements .. 9-2
9.2 Operational Controls ... 9-3
9.3 Waste Profile Form ... 9-4
9.4 Waste Acceptance Criteria Variance Process 9-4

10. QUALITY CONTROLS.. 10-1
10.1 Characterization Objectives Process ... 10-1
10.2 Waste Certification ... 10-1
10.3 Program Inspection, Surveillance and Audit 10-1

11. RECORDKEEPING.. 11-1

12. REFERENCES... 12-1

TABLES

Table 1-1, NSDF WAC Compliance Matrix .. 1-2
Table 6-1, Radionuclide Concentrations in Waste 6-2

FIGURES

Figure 3-1, Waste Lifecycle Responsibilities ... 3-1

APPENDICES

Appendix A Waste Profile Form .. A-1
1. INTRODUCTION

This Waste Acceptance Criteria (WAC) provides characteristics for waste accepted for disposal at the Near Surface Disposal Facility (NSDF) that maintain safety margin provided in the Design, Environmental Impact Statement (EIS), Performance Assessment (PA) and Safety Analysis Report (SAR). The WAC applies to all waste generators offering waste for disposal and feeds into the following future CNL administrative processes:

- Waste characterization process
- Waste acceptance process
- Waste variance process
- Waste certification program
- Waste assurance program

The Waste Characterization process will be used to ensure the minimum requirements of the WAC are met. This process will be performed in accordance with Canadian Nuclear Laboratories (CNL) Quality Assurance (QA) requirements and the NSDF Quality Assurance Project Plan. The Waste Characterization program will be subject to program surveillance and audit functions as described further.

Waste acceptance is provided by approval of the Waste Profile and marks the acceptance of a waste stream for disposal; the generator may then create waste packages under the approved Waste Profile. If a Waste Profile is deemed unacceptable, then recommendations may be provided on potential processing or alternate disposition routes.

Waste that exceeds WAC may be accepted to the NSDF through the Waste Variance Process. Within this process, the waste profile would be evaluated against the NSDF Safety Criteria; defined by the results of the Performance Assessment (PA) [1], the Safety Analysis Report (SAR) [2] and the overall effect on the facility. For example, material that satisfies the NSDF Safety Criteria but would effectively limit the continued operation, facility optimization or safety of the facility would be rejected.

Waste generators will maintain a level of qualification to ensure consistent application of waste acceptance criteria through a Waste Generator Certification program. Personnel will be trained and qualified to address and implement characterization objectives and packaging requirements specified by the waste acceptance criteria.

The Waste Assurance program is a quality control that will provide assurance that the waste generating processes and corresponding individual packages are managed consistent with Waste Management Program requirements. The program will include surveillances and audits conducted at the point of generation and/or on receipt at the NSDF.

The above processes represent the framework and will be further expanded as they are developed.
Waste disposed of at the NSDF must meet the requirements provided in this document to ensure that doses to the public remain within regulatory limits, are As Low As Reasonably Achievable (ALARA), the environment surrounding the NSDF is protected, and the long-term stability of the site is maintained. These safety objectives and their relationship to the implementing section of the WAC are summarized in a compliance matrix provided in Table 1-1.

Table 1-1, NSDF WAC Compliance Matrix

<table>
<thead>
<tr>
<th>NSDF Requirement</th>
<th>Required Condition</th>
<th>WAC Requirement</th>
<th>WAC Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide safety margin to the results of the Safety Criteria [1], [2], [3], [4]</td>
<td>Limit waste inventory to acceptable quantities and specific radioactivity</td>
<td>•Limit concentrations of radionuclides in waste</td>
<td>6, Table 6-1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Provide characterization requirements for significant radionuclides</td>
<td>Table 6-2, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Provide facility radioactivity limits for waste tracking and inventory controls</td>
<td></td>
</tr>
<tr>
<td>Define waste physical properties [5].</td>
<td>Emplaced waste must be consistent with facility design assumptions</td>
<td>•Limit waste physical properties to enable compaction and limit subsidence</td>
<td>5, 7</td>
</tr>
<tr>
<td>Provide controls for waste that support safe operation of the facility [4], [5].</td>
<td>Provide controls for industrial safety hazards</td>
<td>•Define controls for waste that assist facility management of industrial safety risks</td>
<td>5.1, 5.2, 5.7, 7.1.1, 7.2.2, 8</td>
</tr>
<tr>
<td>Protect waste impact on facility systems that provide safety performance [4], [5], [6], [7].</td>
<td>Limit concentrations of materials, physical dimensions and prohibited wastes that degrade facility safety systems</td>
<td>•Provide a list of prohibited materials</td>
<td>5, 7, 8, 9.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Provide limits for concentrations of hazardous substances to Land Disposal Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Provide limits for physical properties of bulk waste materials</td>
<td></td>
</tr>
<tr>
<td>NSDF Requirement</td>
<td>Required Condition</td>
<td>WAC Requirement</td>
<td>WAC Section</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Limit radiation dose to workers [4], [8], [9].</td>
<td>Define radiation exposure and loose surface contamination limits for packages, require ALARA planning for handling packages that exceed contact handled package limits</td>
<td>• Provide limits for contact handled waste packages</td>
<td>Table 6-1, Table 6-2, 8, 8.2, 9.2</td>
</tr>
<tr>
<td>Limit Hazardous Substance release rates [1], [3], [4], [5], [6], [10].</td>
<td>Define ECM leachate characteristics to enable design and administrative programs that provide margin to the NSDF Safety Criteria and CNL environmental protection objectives</td>
<td>• Define radiological and chemical properties of waste</td>
<td>5, Table 6-1, 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prohibit free liquids or hazardous substances that do not satisfy land disposal restrictions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Limit concentration of radium for radon gas control; limit concentrations of degradable organics to control conventional landfill gases and gaseous H-3 and C-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Limit concentration of H-3 to meet environmental constraints at CRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide waste stabilization requirements to reduce effluent concentrations of hazardous substances</td>
<td></td>
</tr>
<tr>
<td>NSDF Requirement</td>
<td>Required Condition</td>
<td>WAC Requirement</td>
<td>WAC Section</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Provide guidance for acceptable waste packaging able to deliver their safety function for the operational and post closure phases of the facility [1], [3], [4], [5], [10], [11].</td>
<td>Provide waste generators guidance for acceptable packagings that preserve safety margin and Performance Assessment assumptions</td>
<td>• Provide packaging criteria for waste streams that maintain safety margin to facility lifecycle • Define acceptable packaging for all waste streams to be disposed at NSDF</td>
<td>7</td>
</tr>
<tr>
<td>Provide record keeping requirements [12].</td>
<td>Ensure waste management records are maintained as required by CNL requirements.</td>
<td>• Define recordkeeping requirements for waste characterization, waste stream assessment and packages disposed in the facility.</td>
<td>11</td>
</tr>
</tbody>
</table>
2. **SCOPE**

This document is prepared to provide waste generators with guidance that enables disposal of waste in compliance with the NSDF Safety Criteria.

Additionally, this document identifies and describes future administrative processes and quality controls that provide assurance that waste emplaced in the NSDF complies with the NSDF Safety Criteria. Specifically, the scope of this document is to:

- Provide waste characterization objectives that ensure the “representativeness” of waste data and enable inventory management to the safety basis.
- Provide waste packaging guidance (e.g. bulk and packaged) and where required, conditioning requirements that enable adherence to the ECM design as it is constructed by the placement of waste.
- Provide limits for the radiological and chemical properties of waste that maintain a margin to pre- and post-closure safety objectives.
- Identify materials prohibited for disposal.
- Identify operational controls for waste packaging that provide criticality safety, radiation safety, industrial safety and protection of the environment.
- Identify quality controls that enable facility management to the design and safety criteria.
3. RESPONSIBILITIES

The NSDF serves waste generators across CNL and accepts a wide range of wastes that encompass the range of processes undertaken by CNL. Waste disposal requires engagement of multiple waste management disciplines [3] at different stages along the waste lifecycle continuum. A simple diagram of these responsibilities is provided in Figure 3-1.

Figure 3-1, Waste Lifecycle Responsibilities

<table>
<thead>
<tr>
<th>Process</th>
<th>Waste Generator</th>
<th>Waste Operations</th>
<th>Waste Services</th>
<th>Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
<td>Perform historical site assessment to assemble and organize process knowledge and waste information into waste streams Section 9.1</td>
<td>Assist generators with: 1) sampling techniques that ensure representativeness and 2) analytical method selection that ensures sensitivity requirements are met Section 9</td>
<td>Assist generators with: 1) sampling techniques that ensure representativeness and 2) analytical method selection that ensures sensitivity requirements are met Section 9</td>
<td>Transportation Services is tasked with providing oversight to hazardous materials transportation to and from CRL including waste shipments made to NSDF from sites other than CRL.</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Develop and execute sample and analysis plans/assessments to produce waste characterization data for each waste stream Section 9.1</td>
<td>Provide guidance/assistance to waste generators in preparing the Waste Profile Form. Approves Waste Profiles to enable waste generation and creation of packages. Section 9</td>
<td>Provide guidance/assistance to waste generators in preparing the Waste Profile Form. Approves Waste Profiles to enable waste generation and creation of packages. Section 9</td>
<td></td>
</tr>
</tbody>
</table>
4. **ACRONYMS & DEFINITIONS**

4.1 **Acronyms**

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>Asbestos Containing Material</td>
</tr>
<tr>
<td>AECL</td>
<td>Atomic Energy Canada Limited</td>
</tr>
<tr>
<td>AK</td>
<td>Acceptable Knowledge</td>
</tr>
<tr>
<td>CNL</td>
<td>Canadian Nuclear Laboratories</td>
</tr>
<tr>
<td>CRL</td>
<td>Chalk River Laboratories</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Standards Association</td>
</tr>
<tr>
<td>CSD</td>
<td>Criticality Safety Document</td>
</tr>
<tr>
<td>D&D</td>
<td>Decommissioning & Demolition</td>
</tr>
<tr>
<td>ECM</td>
<td>Engineered Containment Mound</td>
</tr>
<tr>
<td>FM</td>
<td>Fissionable Material</td>
</tr>
<tr>
<td>HIC</td>
<td>High Integrity Container</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>LDR</td>
<td>Land Disposal Requirement</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>NCCO</td>
<td>Nuclear Criticality Control Officer</td>
</tr>
<tr>
<td>NSDF</td>
<td>Near Surface Disposal Facility</td>
</tr>
<tr>
<td>PA</td>
<td>Performance Assessment</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated Biphenyls</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QAP</td>
<td>Quality Assurance Plan</td>
</tr>
<tr>
<td>SAR</td>
<td>Safety Analysis report</td>
</tr>
</tbody>
</table>
4.2 Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable Knowledge</td>
<td>Information specific to waste characteristics that is judged to be reliable and/or supported by a quality program.</td>
</tr>
<tr>
<td>Asbestos Containing Material</td>
<td>Any material that is contaminated with asbestos of any form.</td>
</tr>
<tr>
<td>Chelating Agents</td>
<td>Chemical compounds (usually organic compounds) that form complexes with metal ions or other substrates. Usually used to modify the solubility of metal ions or other substrates.</td>
</tr>
<tr>
<td>Demolition Debris</td>
<td>Debris resulting from the demolition of a structure. Demolition debris can be concrete, structural steel, windows, roofing, pipe work, ventilation equipment, wood, etc.</td>
</tr>
<tr>
<td>Direct Disposal Package</td>
<td>A package meant to be disposed along with its contents directly in a disposal cell.</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>A process where waste isolation is achieved by completely surrounding the waste with another material i.e., concrete, polymer or bitumen.</td>
</tr>
<tr>
<td>Fissionable Material</td>
<td>Material that is capable of undergoing fission.</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>Waste contaminated with or pure forms of hazardous substances as defined in Ontario Provincial Regulation 347.</td>
</tr>
<tr>
<td>Land Disposal Restrictions</td>
<td>Restrictions on hazardous waste concentration or leaching test results required for land disposal as specified in Ontario Provincial Regulation 347.</td>
</tr>
<tr>
<td>Low-Level Mixed Waste</td>
<td>Low-level radioactive waste contaminated with hazardous substance(s).</td>
</tr>
<tr>
<td>Low-Level Waste</td>
<td>Waste which can be demonstrated as suitable for near surface disposal by safety analysis.</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Oversize Debris</td>
<td>Debris that exceeds size limitations for bulk waste.</td>
</tr>
<tr>
<td>Package</td>
<td>The combination of a waste container and its contents.</td>
</tr>
<tr>
<td>Packaging</td>
<td>Analogous with waste container but includes integral components like liners, cribbing, lifting fixtures, tamper proof seals and venting fixtures, etc.</td>
</tr>
<tr>
<td>Significant Radionuclides</td>
<td>Radionuclides that have significant impact on Safety Criteria.</td>
</tr>
<tr>
<td>Soft Sided Packaging</td>
<td>Packaging made of textiles or engineered fabric.</td>
</tr>
<tr>
<td>Soluble Solids</td>
<td>Material in solid phase under normal conditions but dissolves in water or other liquids.</td>
</tr>
<tr>
<td>Stabilization</td>
<td>The process of creating a structurally stable waste form that will generally maintain its physical dimensions and its form under the expected disposal conditions such as weight of overburden and compaction equipment, the presence of moisture, microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.</td>
</tr>
<tr>
<td>Special Fissionable Material</td>
<td>A fissionable material that can be arranged into a critical assembly outside a nuclear reactor, including material containing Uranium enriched in the isotope U-235 in excess of natural abundance and/or isotopes of Plutonium and/or Np-239 which decays to Pu-239 and/or the isotope U-233 and/or the isotope Pa-233 which decays to U-233. Materials surface contaminated with these radionuclides are not SFM.</td>
</tr>
<tr>
<td>Thermal Power Rate</td>
<td>The rate of heat generated by the decay of radioactive material.</td>
</tr>
<tr>
<td>Waste Characterization</td>
<td>The integrated results of investigations and determinations for chemical properties, radionuclide concentration and physical properties of waste.</td>
</tr>
</tbody>
</table>
5. WASTE PROPERTIES

Wastes being disposed in the NSDF are organized into 6 waste types defined by material type including an “other” category (Waste Type 6) meant to include wastes like “oversize debris” and other non-routine waste materials that require special evaluation for disposal.

The NSDF Waste Types are:

Type 1 Waste – This refers to soil and soil-like wastes. It includes contaminated soils and other waste materials with characteristics similar to soil that can be placed within the mound with little to no handling requirements beyond what would be used for soil fills. For example, contaminated chipped wood material.

Type 2 Waste – Comingled radioactive waste, debris, refuse and soil and soil-like waste. It includes wastes that are anticipated to be at least 50% soil or soil-like in nature. It also contains varying amounts of radioactive wastes that require additional handling procedures beyond those for Type 1 wastes.

Type 3 Waste – Non-soil-like waste, it includes materials that can be excavated and handled as bulk materials but do not have the physical characteristics of soil and soil-like materials. These include process wastes, highly organic wastes, highly compressible wastes, flowing wastes and similar waste types.

Type 4 Waste – This refers to decommissioning and demolition (D&D) waste. It includes typical materials used in construction, such as: concrete, asphalt, brick, lumber, structural steel, process equipment, piping, wood and other building materials produced by decommissioning and demolition activities.

Type 5 Waste – Packaged Waste, it includes a variety of contaminated wastes including wastes contained in large shipping containers, B-25 boxes, drums, buckets, pails and similar containers. These wastes also typically require special handling procedures and procedures for placement and containment within the mound.

Type 6 Waste – Miscellaneous waste, such as oversize debris. Includes waste that does not fall within the definition of waste Types 1 through 5.

5.1 Bulk Waste Physical Properties

Bulk wastes are identified as Types 1 through 4 materials packaged in bulk containers to be emptied at the NSDF and disposed without packaging. As vertical lifts in the NSDF are sized at 0.3 m, bulk materials should, as far as practical, be sized to 0.3 m in one dimension [5] to allow for placement and compaction. Cases will arise where sizing bulk waste materials to 0.3 m in one dimension is impractical due to ALARA considerations, material form, required demolition method or other work face conditions/limitations. These over-size materials will be managed on a case-by-case basis through the WAC Variance Process; waste acceptance personnel will assist the generator with waste profiling these materials.
To facilitate the creation of waste packages that enable safe unloading at the NSDF, waste must be packaged such that the waste empties from the packaging without creating safety hazards for NSDF personnel. Exceptions and variances to this guidance may be accepted via the WAC Variance Process but, in general, criteria for bulk waste conditioning is:

- Demolition debris should be size reduced to 0.3 m or less in at least one dimension and sized to fit within the haulage container. Otherwise, debris can either be reduced to rubble or shipped in large blocks for direct placement in the disposal cell. Rebar in concrete debris shall be cut flush as far as practical. Waste acceptance personnel will assist generators with profiling large blocks of debris as required.
- Waste shall be placed in containers such that binding is eliminated during unloading. As examples, significant amounts of pipe could be segregated and organized to prevent binding as the container is dumped, assemblies of rebar shall be packaged such that no binding is encountered as a package is dumped and operational hazards for placement and compaction operations are mitigated.
- As far as practical, reduce the subsidence impact of large diameter, small gauge pipe by crushing or other means.
- Containers for transportation of bulk waste shall be packaged in a manner that minimizes container contamination during the unloading process (e.g., container liners or plastic wrapped contents).

5.2 Oversize Debris

There are instances where the physical size or mass of discrete waste items may not be practically conditioned to meet the bulk waste physical properties required by Section 5.1. Exceptions will require advance planning to implement special handling or hazard mitigation measures; waste acceptance personnel will assist generators with profiling oversize materials through the WAC Variance process. If acceptable, such wastes shall be categorized as Type 6.

5.3 Thermal Properties

Waste accepted in the NSDF will have minimal decay heat generating properties. Waste is limited to a thermal power rate of ≤2 kW/m³ [10].

5.4 Asbestos Waste

In addition to marking and labeling requirements for radioactive material, Asbestos Containing Material (ACM) must be packaged for disposal in accordance with the Ontario Environmental Protection Act, Regulation 347. Documentation certifying compliance with Regulation 347 will become a part of the completed Waste Profile Form.
5.5 **Hazardous Waste**

Hazardous materials, unless as a co-contaminant in mixed waste meeting LDR as provided in Ontario Environmental Protection Act, Regulation 347 will not be accepted for disposal in the NSDF. Documentation certifying compliance with LDR will become a part of the completed Waste Profile Form.

5.6 **Free Standing Liquids**

The NSDF will only accept solid waste with no free standing liquids (≤1% free standing liquids by mass) [5]. Wastes that have been rendered solid via stabilization (e.g., cementation) or pre-treatment are required to meet this performance objective.

The use of absorbents is acceptable for small, incidental amounts of free liquid or to prevent the presence of condensate upon delivery to the NSDF.

Examples of acceptable absorbents are:

- Aquaset
- Petroset
- Bentonite
- NOCHAR and,
- Others expressly approved on the Waste Profile Form, Appendix A.

5.7 **Prohibited Waste**

Wastes specified in this section shall not be accepted for disposal in the NSDF.

- Putrescible or other wastes that generate noxious gases is not acceptable unless appropriately treated before disposal (e.g., animal carcasses treated with an equal mass of lime).
- No pyrophoric, explosive, or dangerously reactive materials will be accepted.
- No compressed gases will be accepted for disposal at the NSDF. Compressed gas containers shall be permanently vented before disposal. Asphyxiating gases are prohibited from disposal.
- No significant quantities of biomedical, infectious, or pathogenic waste will be accepted for disposal.
- Waste containing polychlorinated biphenyls (PCBs) exceeding 50 ppm will not be accepted. Waste with PCB concentrations above 10 ppm will be acceptable, but require treatment before disposal.
- Corrosive, ignitable, or oxidizing materials will not be accepted for disposal. Ignitable materials include solids that can be ignited at ambient temperature by friction or spontaneous chemical changes.
• Waste containing chelating agents will not be accepted unless the chelating agent is less than 0.1% of the waste by mass.
• Asbestos will not be accepted unless the waste meets all requirements of the Ontario Environmental Protection Act, Regulation 347, General-Waste Management.
• Liquid and gaseous petroleum products will not be accepted, but solid hydrocarbon materials such as bituminous waste and plastics are acceptable.
• Batteries will not be accepted unless the materials meet the criteria of the Ontario Environmental Protection Act, Regulation 347, General-Waste Management.
• IAEA Safeguarded Materials are prohibited. In general, if waste meets the criteria requiring an Inventory Change Document (ICD), it will not be accepted into the NSDF.
6. **RADIOLOGICAL PROPERTIES OF WASTE**

The following guidance covers limits for the radiological properties of waste streams that will be generated during D&D of buildings and structures, remediation of soils and waste generated by everyday operations at site facilities. These limits will be used to define disposal readiness while packages that exceed the limits provided here require more detailed evaluation and may be acceptable for disposal through the waste acceptance variance process.

6.1 **ALARA Applied to NSDF Waste Types**

Permissible bulk waste radionuclide concentrations are limited to minimize worker dose and leachate concentrations. Bulk wastes are the lowest radiological hazard wastes and include Waste Types 1 through 4 and Type 6 that meet corresponding concentration limits.

Standard waste packaging provides a measure of safety by the immobilization of radioactivity for a period of time equivalent to the package lifespan in the NSDF. This is useful for packaging small volumes of waste at radionuclide concentrations greater than bulk waste streams but less than those requiring longer periods of radionuclide immobilization.

To increase the margin of safety for waste streams at the upper range of radionuclide concentration for mobile long-lived radionuclides, stabilization will be incorporated to immobilize the waste and reduce radionuclide concentrations in leachate and dose risk from post closure Human Intrusion scenarios. Specific guidance on waste stabilization can be found in Technical Note 232-508600-430-000, “NSDF-Acceptable Waste Packaging” [11].

The effect of the application of these ALARA measures to the NSDF radionuclide concentration limits provided by the Safety Criteria established 3 categories of waste packages for the NSDF WAC:

1. Bulk Waste (Types 1 through 4 and Type 6)
2. Standard Waste Packages (Type 5), and
3. Stabilized Waste Packages (Type 5 – Stabilized)

Limits on radionuclide concentration for the 3 categories is provided in Table 6-1.

6.2 **Radionuclide Concentrations**

The radionuclide concentration limit is a value expressed in Bq/g that must not be exceeded for a single radionuclide or in the case of a mixture of radionuclides; the sum of the component radionuclide fractions in the mixture must not exceed 1 to demonstrate compliance and referred to as the “Sum of Fractions” rule. Expressed mathematically:

\[
\sum_{i=1}^{\infty} \frac{\text{Concentration of Radionuclide } i}{\text{Limit for Radionuclide } i} \leq 1
\]

Limits for acceptable radionuclide concentrations are provided in Table 6-1.
Table 6-1, Radionuclide Concentrations in Waste

| Bulk Waste (Types 1-4, Type 6) | - 100 Bq/g for α emitting radionuclides
| | - 1,000 Bq/g for long-lived βY emitting radionuclides (t₁/₂ > 30 years)
| | - 10,000 Bq/g for short-lived βY emitting radionuclides
| | - 100,000 Bq/g for Tritium
| Packaged Waste (Type 5) | - 400 Bq/g for α emitting radionuclides
| | - 10,000 Bq/g for long-lived βY emitting radionuclides (t₁/₂ > 30 years)
| | - 10,000 Bq/g for Cs-137 and Sr-90
| | - 10,000,000 Bq/g for Tritium
| Stabilized Waste (Type 5) | - 4,000 Bq/g for α emitting radionuclides
| | - 50,000 Bq/g for long-lived βY emitting radionuclides (t₁/₂ > 30 years)
| | - 100,000,000 Bq/g for Cs-137 and Sr-90

6.3 Fissionable Material in Waste Packages

As a part of the characterization of a structure or land unit, the presence and quantity of Fissionable Material (FM) must be identified. The Nuclear Criticality Control Officer is responsible to ensure that waste received for disposal at the NSDF follows all limits and restrictions in the accepted Criticality Safety Document (CSD) [8]. Waste that does not meet the limits and restrictions in the CSD shall not be accepted at NSDF without prior additional criticality safety analysis and acceptance by the Nuclear Criticality Safety Panel.
6.4 NSDF Total Radioactivity

The total radioactivity of NSDF at closure is limited by the Safety Criteria. Maximum Total Radioactivities have been determined for each radionuclide to ensure that long-term Safety Criteria are met. A set of 11 radionuclides was defined as “Significant Radionuclides” in the context of long-term safety performance. This list includes Am-241, C-14, C-36, I-129, Nb-94,
Pu-239, Ra-226, Tc-99, Th-230, U-234 and U-238. The Waste Generator is required to determine if any of Significant Radionuclides are present, to assess their quantities in accordance with waste characterization requirements and to communicate corresponding inventories for each waste stream using the Waste Acceptance Process. NSDF Operations will be responsible for tracking the inventory of Significant Radionuclides and ensuring that the limits are not exceeded.
7. **WASTE PACKAGING GUIDANCE**

This section provides guidance for waste packages considered to be disposal ready. Other waste packaging may be approved on a case by case basis. More information is provided in CNL document 232-508600-430-000, “NSDF Waste Packaging” [11].

7.1 **Bulk Waste Packages**

This section applies to packaged waste Types 1 through 4. For bulk waste packages, waste is placed large capacity transportation containers with a sacrificial liner for direct dumping into the disposal cell at the NSDF. The liner serves to aid the dumping operation as well as minimize cross contamination of the transportation container by the waste contents.

7.1.1 **Bulk Waste Packaging**

Bulk waste packages utilize multiple-use containers capable of being dumped directly into a disposal cell.

Examples of multiple-use bulk containers include:

- Large ISO freight containers, commonly called sea-land containers typically 20’ and 40’ and may be equipped with top or side-loading features along with end doors. Transportation is by either specially equipped truck. Volumetric capacity is from 25 m³ to 50 m³ and may weigh up to 36,000 kg [13].

- Roll-off containers up to 40 m³ in capacity equipped with a hard top and a single end door. Various duty ratings are available and are transported with specially equipped trucks. Gross weight may be up to 36,000 kg.

- Intermodal waste containers, ~25 m³ in capacity are designed specifically for packaging waste building debris, soil-like material and concrete rubble; are equipped with a top loading feature and a single end door. Various duty rated options are available including Type A, IP-1 and IP-2 Industrial Containers. Transportation is usually via a specially equipped truck. Gross weight may be up to 36,000 kg.

7.2 **Direct Disposal Packages**

This section and its subsections apply only to Type 5 waste being prepared for direct disposal. The container must be compatible with the chemical and physical properties of the packaged waste and waste shall be packaged in a form that minimizes settling and subsidence in the NSDF to the maximum extent feasible.

Packages shall have a label or another unique identifier affixed to facilitate waste tracking. The label will aid in associating wastes to characterization records. A permanent record containing waste package identification labels and characterization data is required.
7.2.1 Direct Disposal Packaging

Single use containers are used to package waste for direct disposal and include:

- Drums and pails which may be galvanized, stainless, carbon steel, or plastic; up to 386 liters and a mass ≤450 kg
- Waste Boxes which may be galvanized steel, stainless steel, carbon steel or wood up to 2.7 m³ and a mass of ≤4500 kg
- Custom packaging specifically designed with integral treatment internals such as filters, ion exchange columns or other features that are disposed directly as a package
- Soft-sided packaging
- Standard and modified ISO containers
- Stabilized Waste Packages

7.2.2 Container Void Fraction

The internal void fraction for direct disposal packages is limited to a maximum of 10% to minimize differential subsidence of the engineered mound as packages and waste break down (decomposition). Direct disposal waste packages shall either have void space filled with non-compactable waste or be capable of being compacted in the disposal cell. Non-crushable direct disposal packages are required to be evenly loaded and voids filled with non-compactable material. Under special circumstances, grout may be used to fill void spaces of containers and waste acceptance personnel will assist generators with special handling coordination and profiling.

7.2.3 Stabilized Waste Packages

A structurally stable waste form that will generally maintain its physical dimensions and its form under the expected disposal conditions such as weight of overburden and compaction equipment, the presence of moisture, microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.

7.3 Lead Shielding in Waste Packages

As general guidance, the presence of lead, contaminated or otherwise, in waste packages is not acceptable for disposal at the NSDF. The use of lead shielding as a component of a waste package offered for disposal will be evaluated and approved on a case-by-case basis through the waste profiling process. The waste generator shall identify the amount of lead shielding proposed for waste packages on the Waste Profile Form.
7.4 Waste Package Marking and Labeling

Packages shall have a label or another unique identifier in order to facilitate waste tracking. This is also to aid in associating wastes to characterization records. A permanent record containing waste package identification labels and characterization data is required.
8. **CLASSIFICATION OF PACKAGES**

Information must be collected or determined and recorded to classify and track each package generated under a Waste Profile. This includes package specific information like:

- Waste Profile number
- Package Identification number
- Packaging type
- Gross weight
- External exposure rate
- Removable contamination levels
- Source Term (radioactivity)
- Hazardous Waste Code (mixed waste)

8.1 **External Surface Contamination on Waste Packages**

The maximum non-fixed surface contamination on the outer surfaces of each waste package, averaged over 300 cm², must be less than 3.7 Bq/cm² βγ, and less than 0.37 Bq/cm² α or special arrangements must be made through the Waste Variance process.

8.2 **Exposure Rates on Waste Packages**

The majority of waste packages generated by D&D activities, environmental remediation and everyday site operations will be contact handled waste as defined here:

- The contact exposure rate on the external surfaces of a waste package is limited to 2 mSv/hr on any of the 6 sides of a rectangular package or from a cylindrical waste package.
- The 1 meter exposure rate on the external surfaces of a waste package is limited to 0.1 mSv/hr on any of the 6 sides of a rectangular package or from a cylindrical waste package.

Waste packages exceeding the external radiation exposure limits for contact handled packages will be accepted but require coordination with Waste Acceptance and NSDF Operations. Waste acceptance personnel will assist generators with Waste Profiling and procedures for storage and disposal of packages that exceed the external exposure rate limits.
9. WASTE ACCEPTANCE PROCESS

The waste acceptance process includes review and approval of generator’s characterization information for waste streams to be disposed at the NSDF [14]. The characterization information is waste stream specific and is provided on the Waste Profile Form found in Appendix A. When the Waste Profile Form is completed and approved, the generator may then generate waste packages for disposal at the NSDF ensuring that packages comply with the limitations and specifications in the approved Waste Profile.

Waste acceptance personnel will monitor compliance to Waste Profiles to ensure their associated packages are compliant. This monitoring is performed through periodic review of Waste Profile requirements along with verification and confirmation inspections conducted on waste packages being generated and on incoming packages at the NSDF.

9.1 Waste Characterization

All waste to be disposed at the NSDF must be characterized for radiological and chemical constituents and physical properties sufficient to demonstrate that the waste meets the WAC. A characterization objectives process is a systematic planning tool that ensures sampling and analytical objectives are defined and is a critical component of characterization plans that meet NSDF quality assurance requirements as described in Section 11 and may include approved process knowledge and analytical methods. The characterization methods and analytical requirements shall be documented in a Characterization Plan (or equivalent) to ensure the targets of the WAC are captured.

The information required for physical, chemical, mechanical properties, and radiological characterization includes data from waste analysis and testing. Information also includes knowledge of materials and/or current and historic processes that generated the waste. Examples of information that may be used to support waste characterization are:

- Analytical data from a representative sample of the waste or waste generated by a suitable surrogate process;
- Material Safety Data Sheets (MSDS) for chemical materials;
- Mass balance data for the waste generating process, to the extent that such data provides a sufficient understanding of the characteristics and constituents in the waste stream;
- Historical information contained in CNL records and other sources;
- Interview information;
- Logbooks;
- Procurement records;
- Radiation work packages;
• Procedures and methods;
• Process flow charts;
• Inventory sheets (including fissile material inventory); and
• Vendor information.

These information sources require evaluation for reliability and confidence before being used to characterize waste properties. Waste characterization guidance can be found Section 5.1.1 which provides requirements for the quality of Acceptable Knowledge (AK) needed to adequately characterize waste. Useful guidance on waste characterization can be found in IAEA, 2007, “Strategy and Methodology for Radioactive Waste Characterization”, IAEA-TECDOC-1537 [15].

9.1.1 Acceptable Knowledge Requirements

In general, waste knowledge must be representative, accurate, and adequately documented to determine waste stream designation and permit waste disposal at the NSDF in compliance with the WAC. Analytical data or other knowledge of the waste must be sufficient and defensible to adequately identify waste characteristics. Acceptable knowledge may be sufficient to establish that waste streams destined for disposal meet Land Disposal Requirements (LDR) for non-radioactive constituents under the Ontario Environmental Protection Act, Regulation 347, General Waste Management [6]. CNL will evaluate all waste stream information in determining acceptable knowledge. In some cases, qualitative knowledge of the waste generating process alone may be sufficient to determine whether a waste stream is subject to the Ontario Environmental Protection Act, Regulation 347 [6].

In the event that the available process and historical information is insufficient to assess against WAC specifications, a representative sample must be analyzed with an appropriate method and limit of detection. Selected methods, including waste sample selection, must also demonstrate proper quality control [14].

There may be cases where one or more waste constituents are present in a waste stream, but expected to have concentrations that do not exceed WAC limits. In these cases, sampling and analysis must be performed to demonstrate that these waste stream constituents are below WAC limits [3], [6]. Sampling and analysis shall be performed when available process knowledge is deemed insufficient or questionable.

Testing of a representative waste sample at an accredited laboratory is required when a generator or treatment facility asserts that a waste stream meets a concentration-based treatment standard either as prescribed by the Land Disposal Requirements provided in the Ontario Environmental Protection Act, Regulation 347, General-Waste Management [6] or the WAC. To demonstrate compliance, analytical data that underpins this claim shall be provided by the generator or treatment facility (i.e., a certification form which demonstrates that the waste was analyzed or an approved characterization report). If sampling and analysis are
performed, these tests are only required for initial characterization of a uniform waste stream or when changes to a process have impact on contaminant concentration or when a new waste constituent might be introduced.

Waste streams must undergo radiological characterization, which includes (at a minimum) the identification of all the Significant Radionuclides and their concentrations in the waste [14]. In addition, fissile radionuclide concentrations must be reported and thermal output from radioactive decay may be required for some waste streams.

All waste must be characterized such that the waste can be disposed of in accordance with the NSDF Safety Criteria based requirements of the WAC. This includes sufficient knowledge to demonstrate that the waste is not prohibited from disposal at the NSDF.

9.2 Operational Controls

An important aspect of creating waste packages is providing for the safe life-cycle management of the waste; it’s conditioning and packaging such that the hazards present in the waste are controlled and, in turn, minimize worker and public exposure to hazards. From the point of generation to ultimate disposal, waste packages present hazards to personnel handling the packages, the staging/storage environment and ultimately, the disposal facility. To this end, operational controls may be imposed on the Waste Profile Form that ensure waste packages present the minimum impact to NSDF operations.

- **Contamination Controls** for materials with levels of removable, loose surface contamination exceeding 100 Bq/cm² βγ or 1 Bq/cm² α are required to manage exposure risk for NSDF operations personnel and to limit dose to members of the public. Waste may require special wrapping, application of a fixative or other means of isolation to provide this protection. Some Type 1 through 4 waste may require containerization to provide contamination controls.

- **Dust Controls** may be required to manage fugitive dust emissions from the NSDF.

- **Industrial Safety Controls** for mitigating industrial safety hazards such as flying objects, tangled or “log jammed” materials, or large heavy objects may be required to aid safe handling at the NSDF.

- **Environmental Controls** may be required to manage wildlife intrusion, spills or other risks to the environment.

- **Special Handling** may be required to load or offload oversize debris, prepare lift plans for overweight items or prepare special instructions and/or ALARA evaluations for high exposure rate packages. Special handling may also be required to place certain materials in a disposal cell at the NSDF.
9.3 Waste Profile Form

The Waste Profile Form is required for each waste stream being packaged for disposal at the NSDF. The waste generator initiates the process by providing a description of the physical properties, radiological and chemical characterization data, the hazardous waste status and estimated waste volume. Additionally, the identification of any unique properties of the waste such as large heavy objects, materials bearing high dust loadings or materials that may require special handling at the NSDF for management of operational safety hazards. Waste acceptance personnel will assist generators with the completion of the Waste Profile Form as required.

Waste acceptance personnel will assist the generator with completion of the form, packaging specification and any operational controls that may be required. Once a Waste Profile is approved, the generator will ensure compliance with the Waste Profile; Waste Advisors will assist generators with compliance monitoring in the field. The Waste Profile Form is provided in Appendix A.

9.4 Waste Acceptance Criteria Variance Process

Wastes that do not meet the WAC may be considered for disposal on a case-by-case basis through the WAC Variance process. The WAC Variance process will be used to evaluate disposal of discrete materials that do not satisfy waste conditioning criteria, exceed radioactivity or hazardous substance concentration limits or other WAC limitations. In no case will waste that exceeds the limits of the NSDF Safety Criteria be accepted. This may include wastes with excessive odour or the potential to generate excessive dust. In order to obtain a variance for a specific waste, the following assessment must be performed:

- The waste will be analyzed to identify the radiological, chemical, or physical criterion or criteria that cannot be met.
- Waste acceptance personnel will perform an assessment of the waste against the NSDF Safety Criteria to determine whether a case can be made that supports acceptability for disposal.
- If a case can be made, the NSDF organization will develop a process for disposal. This may include special handling requirements or require that additional processing be undertaken to make the waste acceptable.
- If a case cannot be made, the NSDF will not accept the waste for disposal. The generator will have to make other arrangements such as waste processing and treatment to achieve WAC compliance or; storage pending disposal at a suitable facility.
10. QUALITY CONTROLS

Quality Assurance programs for waste generating activities that create waste packages for disposal at the NSDF will be implemented under the general guidance of the CNL QA Program. The following quality controls provide assurance that NSDF activities are managed to safety basis commitments.

10.1 Characterization Objectives Process

A characterization objectives process is a series of logical steps that guides a characterization plan for the resource-effective acquisition of data. It is both flexible and iterative, and applies to both decision-making (e.g., compliance/non-compliance with a standard) and estimation (e.g., ascertaining the mean concentration level of a contaminant). A characterization objectives process is used to establish performance and acceptance criteria, which serve as the basis for designing a characterization plan for collecting data of sufficient quality and quantity to support the goals of the plan. The use of a characterization objectives process leads to efficient and effective expenditure of resources; consensus on the type, quality, and quantity of data needed to meet characterization goals. Useful guidance for a characterization objectives process (the Data Quality Objectives process) can be found in USEPA, 2006, “Guidance on Systematic Planning Using the Data Quality Objectives Process”, EPA QA/G-4 [16].

10.2 Waste Certification

The WAC process requires waste to be certified. Certification requires the generator to submit information on its quality procedures that control the characterization of waste streams and classification of waste packages. Waste acceptance personnel will conduct audits and inspections of generator waste activities to ensure that adequate controls are in place to accurately characterize, package, and handle waste. The generator must demonstrate adherence to an approved Quality Assurance Program (QAP) [17] to ensure that documentation is adequate, laboratory analyses are conducted in accordance with approved procedures, and record keeping is sufficient to support waste stream characterization and classification.

Waste generators must implement and maintain a waste generator certification program to ensure that any waste the generators send to the NSDF meets the WAC. Non-conforming waste may be rejected at the point of delivery and returned to the generator for resolution. There is no obligation for the NSDF organization to correct the generators’ non-conformances or dispose of non-conforming waste.

10.3 Program Inspection, Surveillance and Audit

Periodically, Waste generator’s programs, processes and controls will be reviewed with surveillances and audits to identify non-compliances or areas for improvement. Individual waste packages will be evaluated for compliance as they are received at the NSDF.
11. RECORDKEEPING

Recordkeeping requirements for waste management process are provided in AECL, 2010, “Management of Waste Management Records”, CW-508600-REQ-119, Revision 0 [12].
12. REFERENCES

Appendix A

Waste Profile Form

<table>
<thead>
<tr>
<th>Waste Management Plan (WMP):</th>
<th>Waste Profile Number:</th>
</tr>
</thead>
</table>

Waste Identification Checklist (WIC):

SECTION 1: Waste Generator Information

Site Location:

Building Number/Remediation Area:

SECTION 2: Waste Information

1. Waste Description (materials, estimated volume and mass):

2. Waste Composition and estimated percentage

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td></td>
</tr>
<tr>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td></td>
</tr>
<tr>
<td>Asphalt Roofing</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

3. Provide a brief narrative of any Process Knowledge used for characterization and attach supporting documentation.
Appendix A, Waste Profile Form, page 2

4. Does the waste present challenges to compliance with the bulk waste dimensions in Section 6.2? If yes, provide a description of the challenge:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Is waste to be stabilized by solidification with concrete or grout? Yes ☐ No ☐

 If yes, provide Process Control Program documentation as an attachment.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Does/would the waste in its final packaged form have the potential for free standing liquids ≥1% by volume?

 Yes ☐ No ☐

SECTION 3: Chemical Properties

1. Is the waste “Mixed Waste”?

 Yes ☐ No ☐

2. Has the waste been treated to the Land Disposal Requirements of Ontario Regulation 347?

 Yes ☐ No ☐ If Yes, attach supporting documentation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A, Waste Profile Form, page 3

SECTION 4: Radiological Properties

1. Provide radionuclide concentrations of the waste and perform sum of fractions tests for Bulk, Packaged and Stabilized limits from Table 6-1*. Attach characterization report.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Concentration (Bq/g)</th>
<th>Concentration Waste Type 1 – 4 limit</th>
<th>Concentration Waste Type 5 limit</th>
<th>Concentration Waste Type 5 Stabilized limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum of Fractions

*The calculation may be performed directly in this form or provided as an attachment.

2. If the waste contains Fissionable Material (FM) provide the following information.

<table>
<thead>
<tr>
<th>FM Radionuclide</th>
<th>Mass of FM Radionuclide in the estimated total mass of the waste (g)</th>
<th>Estimated total mass of the waste from Section 2-1 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the waste has fissionable material radionuclides, attach the characterization report and Exception Memo from the Nuclear Materials and Safeguards Management Program (NNSM).
Appendix A, Waste Profile Form, page 4

3. **Table:**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Question:** What are the removable contamination levels on the waste?

<table>
<thead>
<tr>
<th>α</th>
<th>Bq/cm²</th>
<th>β</th>
<th>γ</th>
<th>Bq/cm²</th>
</tr>
</thead>
</table>
5. For Type-5 Stabilized waste only, what is the thermal heat generation rate?

kW/m3
SECTION 5: Waste Type Determination

Type 1 Waste – This refers to soil and soil-like wastes. It includes contaminated soils and other waste materials with characteristics similar to soil that can be placed within the mound with little to no handling requirements beyond what would be used for soil fills. For example, contaminated chipped wood material.

Type 2 Waste – Comingled radioactive waste, debris, refuse and soil and soil-like waste. It includes wastes that are anticipated to be at least 50% soil or soil-like in nature. It also contains varying amounts of radioactive wastes that require additional handling procedures beyond those for Type 1 wastes.

Type 3 Waste – Non-soil-like waste, it includes materials that can be excavated and handled as bulk materials but do not have the physical characteristics of soil and soil-like materials. These include process wastes, highly organic wastes, highly compressible wastes, flowing wastes and similar waste types.

Type 4 Waste – This refers to decommissioning and demolition waste. It includes typical materials used in construction, such as: concrete, asphalt, brick, lumber, structural steel, process equipment, piping and other building materials produced by decommissioning and demolition activities.

Type 5 Waste – Standard packaged waste, it includes a variety of contaminated wastes including wastes contained in large shipping containers, B-25 boxes, drums, buckets, pails and similar containers. These wastes also typically require special handling and procedures for placement and containment within the mound.

Type 5 Waste (Stabilized) – A structurally stable waste form that will generally maintain its physical dimensions and its form under the expected disposal conditions such as weight of overburden and compaction equipment, the presence of moisture, microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.

Type 6 Waste – Miscellaneous Waste, It includes waste outside the definition of waste Types 1 through 5. Includes waste that requires special planning for acceptance or emplacement. (e.g.; oversize debris, shielded consignments)
Appendix A, Waste Profile Form, page 6

SECTION 6: Container/Packaging

1. Provide the packaging used for previously packaged waste.

2. For Waste Types 1 and 2, provide moisture content.

3. Is/will the waste packaged in bags?
 - Yes []
 - No []

 If Yes, what type of bag is proposed/required?
 - Asbestos Bag []
 - Soft-Sided Waste Bag []

 What is the estimated total mass in kg and volume in m³ of the waste in each bag?
 - kg
 - m³

Attachments (Check all applicable, note others as required):

- Process Knowledge supporting documentation []
- Characterization Report/Data []
- Asbestos packaging compliance documentation []
- Waste Solidification documentation (PCP and bench test results) []
- LDR compliance documentation []
- Inventory Control Exception Memo []
- Photos/Images []
Appendix A, Waste Profile Form, page 7

SECTION 7: Generator Certification

I certify that the information in Sections 1 through 6 of this form and the applicable attachments are fully disclosed. A good faith effort has been put forward to acquire and verify the information. Willful or deliberate omissions have not been made, and all known and suspected hazards have, to the best of my knowledge, been identified.

<table>
<thead>
<tr>
<th>Print/Type Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

SECTION 8: Waste Disposition Path Determination (Completed by waste acceptance)

1. Is the information provided, other than container specific information (e.g., the container source term, dose rates), adequate for the waste determination, management, transportation, treatment, and disposal of waste? If No, provide additional information or analysis needed.

 - Yes [] No []

 Description of additional information required:

 Additional information received date:

 Information accepted Yes [] No []

2. Does the waste require further treatment? Yes [] No []

 If yes, what treatment is required?

3. NSDF Waste Type

4. Packaging to be used for this waste profile

5. Waste Disposition Path
Appendix A, Waste Profile Form, page 8

6. Operational controls required for waste packaging:

- Absorbent material to absorb incidental moisture
- Poly liner in bulk waste packages
- Apply fixative to waste for fugitive dust/contamination control
- Wrap items that exceed 100 Bq/cm² β γ or 1 Bq/cm² α
- Band sections of pipe together

Other:

7. Certification

I certify that the information on this form (including the attachments) is fully disclosed and accurate

<table>
<thead>
<tr>
<th>Waste Acceptance Technical Representative</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

8. Approval

This Waste Profile is Approved

<table>
<thead>
<tr>
<th>Waste Acceptance</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>